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Identification of genomic 
signatures in bone marrow 
associated with clinical response 
of CD19 CAR T‑cell therapy
Lipei Shao1,3, Avinash Iyer1,3, Yingdong Zhao2, Rob Somerville1, Sandhya Panch1, 
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CD19 CAR T‑cell immunotherapy is a breakthrough treatment for B cell malignancies, but relapse 
and lack of response remain a challenge. The bone marrow microenvironment is a key factor in 
therapy resistance, however, little research has been reported concerning the relationship between 
transcriptomic profile of bone marrow prior to lymphodepleting preconditioning and clinical response 
following CD19 CAR T‑cell therapy. Here, we applied comprehensive bioinformatic methods (PCA, GO, 
GSEA, GSVA, PAM‑tools) to identify clinical CD19 CAR T‑cell remission‑related genomic signatures. 
In patients achieving a complete response (CR) transcriptomic profiles of bone marrow prior to 
lymphodepletion showed genes mainly involved in T cell activation. The bone marrow of CR patients 
also showed a higher activity in early T cell function, chemokine, and interleukin signaling pathways. 
However, non‑responding patients showed higher activity in cell cycle checkpoint pathways. In 
addition, a 14‑gene signature was identified as a remission‑marker. Our study indicated the indexes of 
the bone marrow microenvironment have a close relationship with clinical remission. Enhancing T cell 
activation pathways (chemokine, interleukin, etc.) in the bone marrow before CAR T‑cell infusion may 
create a pro‑inflammatory environment which improves the efficacy of CAR T‑cell therapy.

Chimeric antigen receptor-engineered T cells (CAR T-cells) are a new immunotherapy and they have emerged 
as an efficacious treatment of hematological  tumors1–3. Multiple clinical trials have evaluated CAR T-cell therapy 
for B cell malignancies and have demonstrated promising outcomes by targeting CD19, CD22 or the combination 
of CD19 and  CD224–6. In fact, CD19 CAR T-cell therapy for acute lymphoblastic leukemia (ALL) in children 
and adults with relapsed and refractory disease have achieved remarkable efficacy with up to 90% complete 
response  rate4,7,8. Despite the clinical success of anti-CD19 CAR T-cell therapy, there are still patients who do 
not go into remission or experience a disease  relapse9,10. Furthermore, the determinants of a favorable clinical 
response to CAR T-cell therapy and disease resistance and relapse are largely unknown. Thus, it is important to 
identify biological markers associated with clinical response in order to enable clinicians to determine which 
patients will respond to CAR T-cell treatment in advance so that treatments can be adjusted for the maximiza-
tion of therapeutic effects.

Preliminary studies have explored predictive markers related to clinical remission based on the function 
of T cells in final CAR T-cell products and patients’ baseline clinical status. For example, in vivo expansion of 
CD19 CAR T-cells and in vivo persistence of CD19 CAR T-cells has been associated better clinical response. 
Furthermore, an increased proportion of stem cell memory T cells (Tscm) in the final CAR T-cell products is a 
positive marker for CAR T-cell in vivo expansion and response, whereas a high frequency of effector memory 
T cells (Tem) negatively affects CAR T-cell proliferation and  cytotoxicity11,12. However, few studies have inves-
tigated the relationship between clinical response and the bone marrow microenvironment prior to CAR T-cell 
therapy. The bone marrow microenvironment contains a cellular compartment (bone marrow mesenchymal stem 
and progenitor cells, adipocytes, immune cells, stromal cells) and a non-cellular compartment (growth factors, 
adhesion factors, and chemokines)13. It has been reported the proportion of CAR T-cells in bone marrow was 
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higher in patients with complete remission compared to those with no  response14, which suggests the microen-
vironment of bone marrow as a candidate to explore when investigating factors influencing CAR T-cell potency.

Public RNA-seq data are a rich resource for elucidating the mechanisms of human disease. Combining 
multiple individual datasets in one analysis increases the statistical power and makes it possible to gain addi-
tional insight on underlying biological  mechanisms15,16. However, datasets from different research teams are not 
available in a consistent format in public transcriptome databases. Most teams directly uploaded the final gene 
expression matrix, while others uploaded raw sequencing data which needs an extra processing step using a series 
of bioinformatic pipelines to develop a gene expression matrix. The best way to resolve this issue is to develop a 
standardized bioinformatic pipeline and made it available for downstream analysis.

In this study, we evaluated 31 bone marrow samples obtained from patients with ALL from two centers 
before CD19 CAR T-cell therapy. We acquired their transcriptomic profiles based on an identical bioinformatic 
workflow and identified genomic signatures that could be used as predictors for clinical remission. All analyses 
were performed using well-established algorithms and are provided to facilitate future laboratory studies. In 
summary, we identified key bone marrow microenvironment-related expression signatures that are associated 
with clinical response in ALL patients treated with CD19 CAR T-cells.

Methods
Principal component analysis. Principal component analysis (PCA) was conducted using factoextra 
package in R environment (version 3.6.1). Custom code was uploaded into github public website (https:// github. 
com/ LIPEI SHAO/ Remis sionM arker_ proje ct).

Calculation of differentially expressed genes. The limma R package was used to generate p-values 
and fold change (FC) for each gene between samples with and without remission as a result to the treatment. This 
package takes the unnormalized, raw counts of the expression matrix and the corresponding metadata as inputs. 
The package then models the raw counts using normalization factors to account for the range of expression 
values. Next, the package estimates gene-wise variances and shrinks these estimates to model the counts. Finally, 
the package fits the negative binomial model to the dataset and perform Wald’s Test to calculate the p value or 
significance that a gene is differentially expressed. Genes with a p-value ≤ 0.01 and a │log2 (FC)│ ≥  log2(1.5) 
were identified as differentially expressed genes (Table S2).

Gene ontology analysis. Using the R package, clusterProfiler (version 3.0.4)17, gene ontology (GO) analy-
sis was performed on the dataset. GO analysis varies from GSEA as it utilizes a different annotation set and 
accounts for gene length bias in detection of over/ under representation of genes. With the hg37 annotation 
set, we performed enrichment analysis on our set of differentially expressed genes. We utilized log2(FC) and 
the p-value to determine significant genes for this analysis. Then we determined which GO terms were over 
or under-represented and visualized the data. We grouped the GO terms by biological process (BP), cellular 
component (CC), and molecular function (MF), and selected the significant, over-represented terms based on 
p-value < 0.05.

Gene set analysis. Gene set enrichment analysis (GSEA) was performed in the R environment using the 
fgsea package based on the raw gene expression matrices. This software utilizes Log2(FC) and gene identities 
to determine pathways and their level of expression. The software then used the resulting pathways and the 
Log2(FC) to perform its analysis. The difference between this type of analysis is that it looks at genes in an entire 
set instead of individual genes. The GSEA works by first calculating an enrichment score (ES) that represents 
the amount a gene is overrepresented. Next, a p-value is determined by permutating the genes in the set. The 
pathways were organized based on p-value and NES score, and we selected significant pathways based on these 
criteria. Gene set variation analysis (GSVA), another R package was used to look at enrichment scores for custom 
pathways in order to check pathway activity specifically involved in T-cell function. P-value under 0.05 repre-
sents statistical significance.

Prediction model construction. PAM approach was used to build a prediction model for  remission18. 
PAM was proposed as a modification of the nearest-centroid method, called ‘‘nearest shrunken centroid.’’ This 
approach uses ‘‘de-noised’’ versions of the centroids as prototypes for each class. Discriminant score of predictive 
models is calculated as below:

xi* is the log intensities of gene expression, x′iCR is the shrunken centroid of class CR for the i-th gene, x′iNR is the 
shrunken centroid of class NR for the i-th gene,  si +  s0 is the standard deviation for the i-th gene, πCR is the prior 
probability for class CR, πNR is the prior probability for class NR.

The signature gene, shrunken centroids and standard deviations are defined in Table 1. All process was fin-
ished in  BRB_ArrayTools19. Leave-one-out cross-validation method was used to evaluate the model performance.

δCR(x∗) =

∑

i

(xi ∗ −x′iCR)
2/(si + s0)

2
− 2 log (πCR)

δNR(x∗) =

∑

i

(xi ∗ −x′iNR)
2/(si + s0)

2
− 2 log (πNR)

https://github.com/LIPEISHAO/RemissionMarker_project
https://github.com/LIPEISHAO/RemissionMarker_project
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Statement. All expression data were downloaded from public datasets and all methods were performed in 
this manuscript in accordance with the relevant guidelines and regulations.

Results
Data collection and processing prior to downstream analysis. We first collected related data from 
three known public datasets, including Gene Expression Omnibus (GEO), National Genomics Data Center 
(NGDC) and European Nucleotide Archives (ENA) using the key words “acute lymphoblastic leukemia”, 
“CD19”, and “immunotherapy”. The key words were imputed one at a time and in combination. Datasets were 
recruited when they included expression matrices and metadata describing clinical outcomes. In the end, only 
two datasets meet these requirements for downstream  analysis14,20. All patients in this study were diagnosed 
with B-cell Acute lymphoblastic leukemia (B-ALL) and given CD19 CAR T-cell therapies. Of the 31 patients 22 
achieved a clinical outcome of complete response (CR) while 9 showed no response (NR). One of the datasets, 
GSE153670, included patients enrolled in 3 multicenter clinical trials and it lacked information on age, gender, 
and cytotoxicity (Table S1).

As shown in Fig. 1A, we developed a workflow to process these data and combined them in order to identify 
genomic signatures related to clinical outcomes. GSE153670 dataset provided a final gene expression matrix, 
while PRJCA000750 only uploaded raw fastq data. In order to resolve this inconsistency in the bioinformatic 
pipeline, we processed the fastq data with same software (FastQC, STAR, HTseq) used in GSE153670 dataset.

To determine if there was a batch effect that would hinder our ability to objectively analyze the data, we per-
formed principal component analysis (PCA) on the combined dataset and found there are no obvious clustering 
of samples by dataset indicating that there was no batch effect among the datasets (Fig. 1B). This indicated that 
the combined expression data could be used for downstream analysis.

Bone marrow genes upregulated in patients experiencing complete remission are mainly 
involved in T cell activation and differentiation. From the above PCA, we noticed that there was no 
clear separation of patients experiencing complete remission (CR) and no response (NR) based on the analysis 
of the entire set of genes (Fig. 1B). Consequently, we looked for genes differentially expressed between bone 
marrow from patients with CR and NR. We used limma package in R to calculate the statistically significant 
differentially expressed genes (DEGs) and identified 359 DEGs, including 57 upregulated genes and 302 down-
regulated genes (Fig. 2A and Table S2). Normalized expression data from these 359 genes was used to perform 
supervised hierarchical clustering which showed a clear separation between CR and NR samples (Fig. 2B). PCA 
of the differentially expressed genes confirmed that CR patient bone marrows were distinct from NR patient 
bone marrows based on DEGs (Fig. 2C). Furthermore, gene oncology (GO) analysis conducted using the DEGs 
showed genes upregulated in CR patient bone marrows were mainly involved in T cell activation and differentia-
tion, while downregulated genes had no obvious relationship with T cell function (Fig. 2D, S1). These results 
indicate the status of T-cells from bone marrow in each patient could also contribute to the clinical remission.

Bone marrow from responders and non‑responder show distinct activity in T cell function 
related pathways and cell cycle checkpoint. To further explore the genomic differences in CR and NR 
patient bone marrow, we conducted gene set enrichment analysis (GSEA) using expression data from all genes, 
not just the differentially expressed genes. As shown in Fig. 3A, chemokine and interleukin signaling pathway 
activity was higher in CR patient bone marrows while NR patient bone marrows showed greater cell cycle asso-
ciated pathway activity. Since GSEA only shows enriched pathways in a predetermined set, gene set variation 
analysis (GSVA) was performed using custom pathways involved in T cell function. In addition to chemokine 
and interleukin signaling pathways, we also saw that CR patient bone marrows are enriched in gene expression 

Table 1.  Values of parameters in predictive model equation.

Gene symbol Shrunken centroid in class CR Shrunken centroid in class NR Standard deviation  Si +  S0

IGF2BP1 4.44 6.43 3.62

KCNK3 4.92 6.23 3.28

NKAIN4 5.25 6.62 3.66

GREB1 4.9 5.51 2.79

LAMB4 4.15 4.57 2.18

ADAMTS7 5.52 5.87 2.94

KIF26B 4.55 4.79 2.54

NETO1 5.32 5.6 3.47

TRIM9 5.57 5.69 2.21

RAB6C 4.7 4.84 2.8

TYRO3 5.25 5.36 2.31

KCNN1 5.3 5.46 3.62

HAP1 6.29 6.39 3.38

CCDC155 4.55 4.56 2.53
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profiles involved in early memory cell differentiation (Fig. 3B). These results suggested that the microenviron-
ment of bone marrow affects clinical remission.

Identification of a 14‑gene signature as a biomarker for predicting clinical remission. To 
develop a classifier which can be used for predicting the clinical remission in ALL patients treated with CD19 
CAR-T cells, we tried different machine learning methods in BRB_array tools. Finally, we developed a prediction 
model using prediction analysis for microarrays tool (PAM tool). In consideration of the relatively small number 
of patients in this study, we used a leave-one-out cross validation (LOOCV) method. A 14-gene signature was 
identified as a predictor of clinical outcome. Detailed information concerning this model including signature 
genes, performance, and equation are shown in Fig. 4. In this model, a patient is classified to the class CR if the 
δCR(x*) < δNR(x*), otherwise the patient is NR. The details of determining the discriminant score δCR(x*) and 
δNR(x*) are shown in the methods section. We found that the accuracy, sensitivity, and specificity of this model 
is 90.3%, 100%, and 66.7%, respectively.

Discussion
This study explored candidate clinical remission-related genomic signatures in the bone marrow of patients with 
ALL prior to treatment with CD19 CAR T-cells. Our results show that chemokine, interleukin-related pathway 
activity was higher in the bone marrow microenvironment of patients who experienced a complete response and 
cell cycle checkpoint associated pathway activity was higher in patients who did not. Furthermore, we identified 

Figure 1.  Schematic workflow of study. (A) Flowchart depicting the approach to identify the signatures; (B) 
two-dimensional scatter plot representing sample distribution according to the first two components obtained 
from principal component analysis (PCA) of the complete RNA-seq data. Dots are colored by response group, 
shaped by different datasets.
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Figure 2.  Differentially expressed genes mainly correlated with T cell activations. (A) Volcano plot of the 
360 clinical remission-related DEGs. Fold Change > 2 & p-value < 0.01 were set as screening criteria. DEGs 
differentially expressed genes. Responders represent CR; Non-responders represent NR; (B) Unsupervised 
clustering heatmap of the differential expression genes between responders and non-responders; (C) Principal 
component analysis in CR and NR based on differentially expressed genes; (D) Gene oncology analysis for 
upregulated genes. BP biological process; CC cellular component; MF molecular function. Circle size means 
gene number involved in each term. Circle color means p-adjust value.
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a 14-gene signature as a marker for predicting clinical remission following CD19 CAR T-cell immunotherapy 
in ALL patients.

Our study identified bone marrow biomarkers measured prior to CAR-T cell treatment that are associ-
ated with better clinical response. Other pre-treatment patient characteristics that affect the outcome of ALL 
patients treated with CAR T-cell include disease burden, high risk disease cytogenetics and disease molecular 
 phenotype8,21,22.

Other biomarkers that are associated with the clinical outcome of CD19 CAR T-cell therapy have been 
described, but most involved CAR T-cells product characteristics or events occurring in the patient after the 
CD19 CAR T-cells have been  administered21,23. Several studies have found that CD19 CAR T-cell expansion 

Figure 3.  Different active pathway in responders and non-responders. (A) The top half above dash red line 
depicts activated pathways in the responder group and the bottom half depicts pathways activated in the non-
responder group based on gene set enrichment analysis. (B) Heatmap shows different pathway activity score in 
CR and NR. Color represents p-value.
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and persistence are associate with better clinical  outcomes12,22,24,25. The expression of a more immature T cell 
phenotype such as Tscm phenotype by CD19 CAR T-cells has been associated with better clinical  outcome12,24. 
CD19 CAR T-cells that have a mature phenotype and express immune checkpoints/exhaustion markers such as 
programed cell death protein-1 (PD-1), T cell immunoglobulin and mucin-domain containing-3 (TIMP-3) and 
lymphocyte activation gene-3(LAG-3) are less effective  clinically21.

Response to immune therapies including CAR T-cells is also dependent on the tumor, the tumor stroma and 
immune cells within the  tumor26. The immunosuppressive effective of tumor microenvironment has been well 
documented. Leukemic cells in the circulation and bone marrow in patients with ALL are likely much more 
accessibility to CAR T-cells than cancer cells in the tumor microenvironment, but our results suggest that the state 
of the bone marrow microenvironment is still important in the response of ALL patients to CAR-T cell therapy. 
Our study showed that a proinflammatory microenvironment may support effective CD19 CAR T-cell therapy.

The bone marrow microenvironment is important in protecting and maintaining both normal and leukemic 
stem  cells27. In addition to blood, the bone marrow microenvironment contains endothelial cells, osteocytes, 
osteoblasts, adipocytes, mesenchymal stromal cells and macrophages. Some evidence suggests that monocytes 
are important in the bone marrow microenvironment. The qualities of non-classical monocytes are increased 
in the bone marrow from patients with ALL at the time of diagnosis while the number of classical monocytes is 
 decreased28. Animal models have found that depleting non-classical monocytes from the marrow prolongs ALL 
remission following  chemotherapy28. Blood biomarkers are also associated with CAR T-cell clinical outcome. 
Adults with lymphoma treated with CD19 CAR T-cells who had low levels of circulating myeloid derived sup-
pressor cells (MDSC) pre- and post-treatment had better clinical responses. In this same group of patients those 
with markers a Th1 type of immune response also had better clinical  outcomes29.

Other studies found that elevated lactate dehydrogenase (LDH) levels are associated with a less favorable 
outcome in patients with ALL who were treated with CAR T-cells. One study found that in adults with ALL who 
were treated with CD19 CAR T-cells lower pre-leukoreduction LDH levels and higher pre-leukocyte reduction 
platelet counts were associated with better event free  survival30. The less favorable outcome in patients with high 
LDH levels and low platelet counts likely reflects more leukemia in the marrow and more rapidly progressive 
 disease30. However, some studies suggest the elevated LDH levels are related to an immunosuppressive tumor 
 microenvironment21.

The tumor microenvironment is also important in lymphoma patients who were treated with CAR T-cells. 
In patients with B cell lymphomas who responded to CD19 CAR T-cell therapy, the responding tumors showed 
infiltration of CAR T-cells and the presence for activated T-cells31. The quantities of activated T cells present 
were much greater than the quantities of CAR T-cells suggesting that T cell activation is important in clinical 
 response31.

It is well known that pre-treatment leukocyte reduction improves clinical outcomes of CAR-T cell  therapy25. 
Leukopenia results in increased CAR T-cell expansion which improves clinical outcome, however, leukocyte 
depletion may also affect immune cells within the bone marrow. Pre-clinical studies suggest that immune check 
point blockade improves CAR T-cell therapy for cancers. It is possible that the administrative to immune check-
point inhibitors might improve the outcome of CD19 CAR T-cell therapy in ALL patients who do not have a 
bone marrow microenvironment with T cell activation  pathways32,33.

In summary, our results indicate the combined effect of specific drugs activating chemokine, interleukin-
related pathway and CAR T-cell immunotherapy may be beneficial in T cell activation and clinical remission. 
However, this analysis was only based on the limited accessible datasets and patients’ number. Further investiga-
tion is needed to collect and track more samples to confirm the findings.
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